Пароизоляция пропускает воду или нет?

Содержание

Чем отличается пароизоляция от гидроизоляции: разница в использовании

Пароизоляция пропускает воду или нет?

Защиту слоя утепления в кровельном пироге выполняют два разных по структуре и назначению вида изоляционных материалов.

Неграмотное их применение, неверный подбор по техническим показателям, неправильная установка приводит к намоканию теплоизоляции и к утрате заложенных производителем качеств.

В итоге вместо сокращения теплопотерь мокрый утеплитель станет способствовать увеличению утечек, в обустроенных подобным образом помещениях будет чрезмерно сыро и холодно.

Чтобы избежать описанного негатива, выясним, чем отличается пароизоляция от гидроизоляции, как с использованием этих защитных пленок сооружается система утепления кровли.

Тонкости сооружения кровельного пирога

Пирог утепленной кровельной системы представляет собой многослойную конструкцию, каждый компонент которого обязан безукоризненно выполнять доверенную ему работу. Основная его составляющая представлена утеплителем, для защиты которой от намокания сверху и снизу устанавливаются изоляционные пленки, устраиваются вентиляционные каналы.

Верхний и нижний защитный слой кровельной теплоизоляции выполняют разную по характеру работу:

  • Уложенный сверху барьер оберегает теплоизоляцию от атмосферной воды, выпадающей в формате жидких осадков и формирующейся при таянии снежных залежей. Этот слой называется гидроизоляцией, он препятствует проникновению влаги с внешней стороны системы утепления, но не мешает приникшей с внутренней стороны влаги свободно выйти из утеплителя.
  • Устроенная снизу изоляция защищает утеплитель от бытовых испарений, образующихся в ходе эксплуатации помещений, при приготовлении пищи, приеме гигиенических процедур и т.д. Это пароизоляция, предназначенная для предотвращения попадания пара в теплоизоляционную толщу.

Пароизоляционный барьер не пропускает совсем или пропускает минимум пара. Гидроизоляция по функциональному назначению обязана проводить поступающую снизу парообразную воду. Отсюда и разница в строении, и отличия в выполняемой материалами работе.

Паропроницаемость как основной показатель

Паропроницаемость – одна из главенствующих характеристик изоляционных кровельных пленок, оказывающая влияние на выбор и определение места для их установки. Она указывается производителями материалов в технической документации, обозначается в граммах или долях грамма, которые за сутки может проводить 1 м2 рулонной изоляции (мг/м² в сутки).

Опираясь на способность защитных материалов пропускать пар, их делят на два основных класса:

  • Паропроницаемые. Включает все типы гидроизоляционных мембран. Способность проводить пар исчисляется сотнями и даже тысячами миллиграммов.
  • Паронепроницаемые. Включает полипропиленовые и полиэтиленовые пленки, антиконденсатные мембраны. Их способность пропускать пар равна долям миллиграмма, нескольким единицам или десяткам миллиграммов.

Согласно строительным предписаниям компоненты кровельного пирога подбирают так, чтобы их способность пропускать испарения нарастала от внутренней стороны к внешней стороне. Т.е. наименьшими показателями по паропроницаемости должна обладать нижняя пленка.

Утеплитель должен быть наделен бóльшими возможностями пропускать пар, чем пароизоляция, но они должны быть меньше, чем у гидроизоляции. Описанная структура кровельного пирога необходима для того, чтобы вся влага, которая может оказаться в толще теплоизоляции, не задерживалась там и свободно выводилась за пределы кровельной системы.

В грамотно устроенном пироге все, чему удалось прорваться через пароизоляционный барьер, устремлялось через утеплитель к гидроизоляции, которая беспрепятственно пропускает пар за пределы конструкции, но исключает проникновение в теплоизоляцию дождевых капель и талой воды.

Аналогичный принцип соблюдается при обустройстве перегородок и перекрытий, установленных между помещениями с различающимися эксплуатационными условиями. Проще говоря, между отапливаемыми комнатами и холодным чердаком должна быть устроена теплоизоляционная система, развернутая пароизоляционной защитой к жилью.

Если в пределах одного этажа помещение со стандартными эксплуатационными условиями соседствует, к примеру, с парильней русской бани, то между ними утепляют перегородку, установив первой от парилки пароизоляционную пленку.

Однако для безупречной организации кровельной системы мало делить материалы на классы по способности не пропускать или легко расставаться с паром. Надо обязательно выяснить, какие материалы используются в качестве подковельных пленок, в чем разница между способами устройства пароизоляции и гидроизоляции, как реализуется технология их укладки.

Виды паронепроницаемых вариантов и их характеристики

Раньше единственным пароизоляционным вариантом был пергамин, пропускающий в среднем около сотни мг/м² за сутки. Для устройства пароизоляционного барьера из него кровельщику требовалось проявлять чудеса ловкости, т.к. материал легко повреждался в процессе монтажа. Была проблема при соединении полос пергамина в единое полотно и при оборачивании конструкций непростой формы.

На смену пергамину пришел полиэтилен, позже в пароизоляционную сферу внедрился полипропилен, точнее, изготовленная из него пленка. Они-то и стали основой для разработки обширной линейки полимерных мембран, используемых в паро- и гидроизоляции. Новое поколение изоляционных материалов опережает предшественников по прочностным показателям, по устойчивости к УФ и нестабильным температурам.

В списке полимерных пароизоляционных видов числятся:

  • Фольгированные мембраны. Материалы с металлической оболочкой, устроенной с рабочей стороны. Применяются в обустройстве гигиенических помещений, требующих сохранения полученной при обогреве температуры: саун, парилок. Фольгированная поверхность может служить отражателем тепловых волн, если между ней и обшивкой оставлен зазор без вентиляции.
  • Антиконденсатные пленки. Рулонные материалы, одна сторона которых имеет шероховатую текстуру, вторая – гладкую. Шероховатая поверхность исключает формирование росы на пароизоляционном барьере, гладкая препятствует обратному току влаги, проникшей или образовавшейся в утеплителе.
  • Пленки из полипропилена и полиэтилена. Чаще всего это армированные аналоги устаревших полиэтиленовых и полипропиленовых вариантов. Используются в бюджетном строительстве, хотя по цене за 1 м2 не слишком сильно отличаются от новых полимерных пароизоляционных материалов.

Пароизоляционные материалы с паропроницаемостью, составляющей несколько десятков мг на 1 м2 за сутки, по сей день используются в системах теплоизоляции холодных чердаков, утепляемых засыпным материалом, например, керамзитом. Если есть реальные ограничения в бюджете строительства, то этот вид может применяться в обустройстве отапливаемых мансард.

Однако разница между стоимостью полиэтилена с пропиленом и мембранных барьеров такова, что особого смысла нет в подобной экономии.

К тому же новые виды пароизоляционной защиты существенно прочнее, их сложно повредить при неосторожных движениях в период монтажа.

Служат антиконденсатные мембраны практически столько же, сколько кровельные покрытия, т.е. во все время эксплуатации крыши не нужно будет проводить капитальный ремонт.

Свойства и виды паропроницаемых мембран

Главное отличие полимерных мембран для гидроизоляции от материалов для пароизоляции заключается в том, что они свободно пропускают наружу пар и конденсат, образованный в толще утеплителя из-за разницы температурных показателей под системой утепления и над ней. Пока не изобретен материал, способный предупредить появление влаги в теплоизоляции. Однако есть технологии, позволяющие избавляться от воды в кровельном пироге, и материалы для реализации подобных схем.

Как уже упоминалось, гидроизоляцию кладут поверх утеплителя. Располагают ее под кровлей. Между ней и теплоизоляционным слоем устраивают или не устраивают вентиляционный зазор в зависимости от материала, использованного в организации системы.

К востребованным в строительстве видам паропроницаемым, иначе именуемым паропрозрачным материалам относятся:

  • Перфорированные пленки. Рулонные материалы с отверстиями особой формы, которые обеспечивают отвод пара, но не пропускают воду с внешней стороны. Служат в основном изоляцией скатов над холодными чердаками, т.к. не могут полноценно выполнять гидроизоляционные и ветрозащитные функции.
  • Пористые мембраны. Материалы с волокнистой структурой, по строению схожие с фильтром. Показатели паропроницаемости этого вида зависят от диаметра пор и способности волокнистой ткани пропускать испарения. Этот вид гидроизоляции не используется там, где есть возможность засорения пор от избыточного содержания пыли.
  • Супердиффузионные мембраны. Тончайшие многослойные мембранные системы, каждый слой которых выполняет определенную работу. В их строении нет отверстий, которые могут забиваться пылью, потому материалы указанной группы обладают наивысшей сопротивляемостью всевозможным загрязнениям.

Супердиффузная мембранная изоляция бывает двух- и трехслойной. Двухслойные разновидности уступают трехслойным собратьям по критериям прочности, т.к. в их строении удалена одна из армирующих подложек. По стоимостным аспектам оба варианта не слишком различаются, потому при возможности выбирать предпочесть лучше трехслойный материал.

Пористые и супердиффузионные материалы вместе с водозащитными обязанностями играют роль ветрозащиты. Они предотвращают «вымывание» ветрами тепла из легких волокнистых ватных утеплителей.

Перфорированные пленки эту работу не делают, потому при использовании для изоляции скатов минеральных ват требуют устройства дополнительного ветрозащитного ковра, что порой сводит к нулю первоначальную экономию.

Укладку подкровельной гидроизоляции обязательно сопровождает устройство вентиляционной системы, которая бывает:

  • Одноуровневой. Предопределяющей организацию вентиляционных каналов, продухов, между гидроизоляционным барьером и кровельным покрытием. Устраивается при использовании супердиффузионных и пористых мембран, которым не запрещено вплотную контактировать с любым типом утеплителя.
  • Двухуровневой. Полагающей организацию двух уровней вент. каналов, находящихся между теплоизоляцией и гидробарьером, затем между ним и покрытием. схема характерна при использовании перфорированных пленок

Продухи – вентиляционные каналы, расположенные параллельно скатной кровле, устраивают путем установки деревянной рейки с высотой стенки не менее 4 см.

Для двухуровневой системы реку крепят в два яруса: над утеплителем и над гидроизоляцией.

Сформированная с ее помощью обрешетка заодно фиксирует рулонную изоляцию, а также служит основой для кладки кровли или сплошного настила под мягкие виды покрытий.

Нюансы укладки подкровельных пленок

Мы выяснили, что укрывающие пирог от атмосферного негатива гидроизоляционные материалы могут укладываться с одним либо двумя вентиляционными зазорами. Они нужны для того, чтобы в многослойной кровельной системе не накапливалась влага, а свободно выводилась потоком воздуха по сформированным рейками продухам.

Равнозначную функцию выполняют вентиляционные зазоры, сопровождающие укладку пароизоляционных пленок. Независимо от структуры и состава материала их устанавливают с двумя ярусами вентиляции, находящимися с обеих сторон паробарьера. Из-за низкой паропроницаемости этому слою требуется усиленное проветривание.

Большинство подкровельных пленок не обладает способностью растягиваться при натяжении. Поэтому на стропильный каркас их укладывают так, чтобы рулонная изоляция несколько провисала в пространстве между стропилинами. Провисание необходимо, чтобы материал не треснул при натяжении во время стандартных подвижек, свойственных деревянным системам.

Полотнища гидроизоляции расстилают в зависимости от крутизны конструкции. На крутых крышах материал кладут вдоль стропильных ног, на пологих крышах располагают параллельно коньковому прогону. Полосы пароизоляционной защиты устанавливают исключительно параллельно коньку.

Укладка полос производится с нахлестом, величина которого обозначена производителем изоляционной продукции. На рулонах обязательно указывается сторона, согласно которой должен производиться монтаж полос. Менять стороны категорически запрещено, т.к. в итоге изменятся паро- и водоизоляционные свойства.

При устройстве гидрозащиты, укладываемой параллельно коньковому ребру, стартуют от линии карниза. Для правильного обустройства край стартовой гидроизоляционной полосы должен выступать за край карниза на 10 см по минимуму. Его потом выводят под капельник или карнизную планку. Полосы кладут так, чтобы нахлест верхнего полотнища перекрывал край нижнего.

Пароизоляционный барьер начинают сооружать, стартуя от конькового ребра. Каждое следующее полотнище обязано закрыть нахлестом край предыдущего. Если соблюдать описанную методику в устройстве обоих видов изоляции, в утеплитель попадает минимум воды.

об отличиях паро- и гидробарьеров

Как отличать материалы для устройства паро- и гидроизоляции:

Правила применения подкровельных пленок марки Изоспан:

Принцип действия защиты от испарений и атмосферной воды:

Сведения о различиях в назначении, структуре и правилах укладки изоляционных кровельных материалов помогут грамотно устроить кровлю и защитить его компоненты от всех видов воды.

Источник: https://KrovGid.com/izolyaciya/chem-otlichaetsya-paroizolyaciya-ot-gidroizolyacii.html

Гидроизоляция и пароизоляция

Пароизоляция пропускает воду или нет?

Любой дом, каким бы красивым он ни был, должен, помимо всего прочего, быть теплым, безопасным и уютным.

Чтобы этого достичь, мало просто выбрать наиболее приемлемый проект, все построить и сделать «под ключ».

Важно еще не забыть о немаловажной детали: средствах обеспечения наилучшего микроклимата в помещении и сохранения нужной температуры. Итак, в чем отличие пароизоляции от гидроизоляции?

Что используется для пароизоляции?

Для монтажа такой системы применяются специальные рулонные или листовые геосинтетики, мембраны ПВХ, толь, пергамин, рубероид, лаки полимерные.

Если требуется сделать пароизоляцию за батареями или, например, в саунах или банях, то есть любых помещениях с высокой влажностью и температурой, применяется фольга или термофол.

Пленки для пароизоляции представляют собой специальное, снабженное усиливающей пленкой полотно, изготовленное из полимеров. Существует несколько видов таких пленок.

  • Стандартная: полностью паропроницаемый материал, который применяют для кровель в обжитых домах.
  • С отражающим слоем: с одной стороны такая пленка тоже усиленная, покрыта фольгой или слоем алюминия. Она уменьшает потери тепла, полностью непроницаема для влаги, используется в ванных, бассейнах, кухнях, тех же саунах или банях.
  • Пленки ограниченной проницаемости пара: изготовлена из нетканых волокон, позволяет равномерно и легко убрать лишнюю влагу из помещения, не создавая при этом конденсата под крышей. Лучше всего такой материал подходит для дач, садовых домиков, то есть для домов, где живут лишь время от времени.
  • Материал с переменной проницаемостью пара: не пропускает пар в сухом виде, а вот при повышении влажности не задерживает влагу, а выводит ее наружу. Подходит она для масштабного ремонта крыши, так как не дает воде проникать внутрь здания и портить отделку.

Что такое гидроизоляция?

Разбираясь, в чем отличие пароизоляции от гидроизоляции, стоит выяснить и что же представляет собой гидроизоляция. Так называется совокупность мер, направленных на защиту любых сооружений, домов, конструкций и строительных построек от внешней влаги, попадающей извне, или от любого контакта с омывающими жидкостями с нейтральным или агрессивным составом.

В чем же разница?

Пар от воды образуется в природе постоянно.

Чем пароизоляция отличается от гидроизоляции – разъясняет эксперт

Он поднимается в ванной во время водных процедур, любой стирки, приготовления почти любой пищи. Даже дыхание, по сути дела, − это пар.

И если в помещении нет от него специальной защиты, то имеющийся утеплитель будет впитывать влагу, которая затем выпадет конденсатом и приведет к тому, что стены покроются плесенью, потемнеют от сырости, да и сам утеплитель попросту отвалится.

В чем отличие пароизоляции от гидроизоляции? Все элементарно. Первая защищает дом именно от влаги внутренней. А последняя не дает попасть внутрь воде из внешней среды, предохраняет утепляющие материалы от любых конденсатов, осадков, образующихся под кровлей.

Это могут быть последствия мощного дождя, стаявшего снега, любых протечек труб. Именно гидроизоляция призвана продлить долговечность постройки и усилить ее надежность, обеспечить удобное и качественное использование оборудования и здания.

Материалы для гидроизоляции

Это тоже усиленные сеткой пленочные покрытия, изготовленные из все тех же полимеров. Они бывают следующих видов:

  1. универсальными (не пропускающими воду никогда и ни в каком виде);
  2. антиконденсатными (снабжены слоем полотна из вискозы и целлюлозы, отлично впитывают воду и удерживают ее, при этом быстро высыхают);
  3. снабженные микроперфорацией (имеют небольшую проницаемость, требуют особого монтажа);
  4. с мембранами (защищают от влаги из атмосферы, но не выпускают из помещения пары).

Этим термином называется комплекс специализированных средств, материалов и технологий, направленных на защиту любых строительных сооружений и конструкций, а также утепляющих материалов от попадания внутрь пара, образующегося внутри помещения, и впитывания получившегося конденсата.

Вполне понятно, как удерживается вода в жестяной банке. А может ли держать воду кусок ткани? Узнай из этого опыта.

Реквизит

  • Квадратный кусок марли, 15×15 см
  • Стакан
  • Резинка
  • Кувшин воды
  • Пластиковая миска или форма для выпечки

Начинаем научное волшебство!

  1. Объяви зрителям: «У меня есть чудесная односторонняя ткань, которая пропускает воду только в одном направлении».
  2. Накрой стакан марлей.
  3. Закрепи марлю на месте резинкой. Края марли прижми к стенкам стакана.

  4. Налей через марлю полный стакан воды.
  5. Одной рукой возьми стакан вместе с марлей, а другой рукой накрой его сверху.
  6. Переверни стакан вверх дном над миской или формой.

  7. Скажи волшебные слова, а потом медленно убери руку, закрывающую стакан. Что произойдет?

Советы учёному волшебнику

Этот трюк проще выполнить, если стакан воды полон до краёв. Если у тебя не получается удержать воду в стакане, попробуй намочить марлю, прежде чем накрыть ею стакан.

Что ещё можно сделать

Проведи такой же эксперимент с какими-нибудь другими тканями. Что у тебя получится?

Результат

Когда ты переворачиваешь стакан, из него вначале просачивается небольшое количество воды, но затем она перестает течь совсем. Марля не дает воде вылиться из стакана.

Объяснение

Этот трюк возможен отчасти из-за поверхностного натяжения — спо­собности молекул на поверхности жидкости сцепляться друг с другом, образуя тонкую пленку. Вода заполняет отверстия в ткани и «запечатывает» их благодаря поверхностному натяжению. Кроме того, воздух, так же, как и вода, состоит из молекул.

В воздухе молекулы все время находятся в движении, создавая постоянное атмосферное давление. Когда ты переворачиваешь стакан, в нем не остается воздуха, поэтому там отсутствует и атмосферное давление. Давление воздуха снаружи стакана на ткань оказывается больше, чем давление воды внутри него.

Пароизоляция и гидроизоляция: отличие и назначение

Давление воды на ткань изнутри стакана возникает из-за силы земного притяжения, или гравитации, воздействующей на воду.

Притяжение, или гравитация — это сила, с которой объекты при­тягиваются друг к другу. Она зависит от их массы.

Совокупность атмосферного давления на поверхность ткани и силы поверхностного натяжения воды и позволяет ткани удерживать воду.

Источник: https://astgift.ru/gidroizoljacija-i-paroizoljacija/

Пропускает ли пароизоляция воду?

Пароизоляция пропускает воду или нет?

Каждому человеку хочется, чтобы условия проживания в доме были одинаково комфортны как в летний зной, так и в зимнюю стужу. Но что нужно, чтобы создать в доме благоприятную атмосферу? Конечно же, в условиях суровых российских зим главным будет, пожалуй, качественное утепление, которое и на отоплении поможет сэкономить немалую сумму.

В качестве утеплителя пола, стен и перекрытий обычно применяется минеральная вата, которая является хорошим теплоизолятором. Однако, есть у минваты как минимум один существенный недостаток — способность вбирать в себя влагу как губка, из-за чего она в разы теряет свои свойства сохранять тепло. Для защиты минеральной ваты от намокания служат такие материалы, как гидро- и пароизоляция.

При обустройстве кровли необходимо брать в расчет максимально возможные перепады температур снаружи и внутри помещения, а также осадки в любом виде и ветра вплоть до ураганных. Ведь крыша дома является по сути границей, разделяющей воздух внутри помещения и снаружи.

Как мы знаем по законам физики: тот воздух, который имеет более высокую температуру, всегда будет подниматься вверх — под потолок. Поэтому под любое кровельное покрытие закладывается утеплитель, чтобы удержать в доме тепло.

Но для того, чтобы утеплитель служил дольше и не утратил своих теплоизоляционных свойств, его необходимо оградить от попадания влаги.

Конечно, и сами кровельные материалы неплохо защищают утеплитель от прямого попадания влаги внутрь, но от образования конденсата в подкровельном пространстве они вряд ли спасут — не настолько они герметичны, чтобы не пропускать водяной пар. В данном случае на помощь придет качественная гидроизоляция, которая не пропустит водяной пар из окружающей среды в утеплитель.

Стоит отметить тот факт, что многие горе-строители пренебрегают гидроизоляцией подкровельного утеплителя, покупают дешевые материалы, а то и вовсе заменяют гидроизоляционные пленки обычным полиэтиленом с огорода или даже пароизоляцией, не находя между ними никакой существенной разницы. Мол, пленка она и в Африке пленка. Как ни крути.

В результате таких «мелких» недочетов получается, к примеру, что после год назад выполненного монтажа новой кровли с крыши мансарды вдруг начинает течь вода, на потолке появляются мокрые разводы. Хозяева недоумевают.

Начинают искать повреждения и места протечек кровельного покрытия, но, так и не выявив в нем никаких дефектов, приходят к извечным вопросам — кто виноват и что делать? И тут начинают вспоминаться законы физики и приходят умные мысли, что находящаяся в воздухе влага, оказывается, теоретически может конденсироваться внутри самого помещения, образуя потеки на потолке…

Но почему же до ремонта даже признаков конденсата на потолке не было? Можно предположить, что снизу под утеплитель была заложена гидроизоляция вместо пароизоляции, как результат — уже утеряны свойства забившегося водяными парами пористого утеплителя со всеми вытекающими отсюда последствиями. Если же и вовсе никакие изоляционные пленки не использовались, то влага будет «гулять» по всей конструкции, повреждая не только теплоизоляцию, но и способствуя разрушению стропильной системы и даже внутренней отделки.

Так чем все-таки отличается гидроизоляция от пароизоляции?

Для чего нужна гидроизоляция?

Основная функция гидроизоляционной пленки состоит в предотвращении попадания влаги с улицы. «А для чего нам это нужно, особенно на крыше, где кровля итак не пропустит внутрь никакую воду? Лишние затраты да и только» — скажете вы. И, возможно, окажетесь правы, если вам нужно просто заменить кровлю над отапливаемой частью помещения, например, на обычном чердаке.

Гидроизоляция кровли необходима в том случае, когда предполагается закладка слоя минераловатного утеплителя, что в случае с мансардой делается обязательно, поскольку кровля может задержать лишь падающие осадки в виде снега и дождя, но не обеспечит защиты от проникновения паров воды после летнего дождика или тумана.

Этот пар при отсутствии изолирующего слоя попадет напрямую в подкровельный утеплитель, в качестве которого в основном применяется минеральная вата, в результате чего все его воздушные поры будут «закупорены», что негативно скажется на теплоизоляционных свойствах. А это будет особенно заметно в зимний период, когда кристаллизуются пары влаги в порах материала утеплителя.

Поэтому, теплоизоляционный слой нужно защитить от влаги извне. И поможет нам в этом пленочный гидроизоляционный материал.

Для чего нужна пароизоляция?

Пароизоляционные пленки, в отличие от гидроизоляции, предназначены для укладки их снизу под слой кровельного утеплителя для его защиты от теплых, просачивающихся с потолка паров, которые присутствуют в любом помещении даже при изумительной вентиляции, а все потому, что мы дышим, пользуемся паровыми утюгами или готовим пищу, моемся в душе, поливаем цветы и т.п. Таким образом, парозащита перед слоем теплоизоляции — очень нужная вещь.

Основное отличие гидроизоляции от пароизоляции заключается в том, что современные гидроизоляционные мембраны способны пропускать пар в одном направлении (при правильном монтаже — наружу из утеплителя), при этом препятствуя проникновению воды снаружи.

Защита утеплителя кровли от намокания с использованием гидроизоляционной мембраны и пароизоляции

Стоит отметить, что слой пароизоляции, если смотреть изнутри помещения, всегда выполняется последним слоем (перед окончательной отделкой, разумеется). Например, если это пол над неотапливаемым подполом (подвалом), то пароизоляция монтируется не по перекрытию (внизу), а сверху, прямо под чистовой «одежкой» пола. Со стенами то же самое.

Не забывайте: водяной пар диффундирует всегда в направлении более холодного воздуха. И первой преградой на пути пара к утеплителю должна служить именно пароизоляция! А уж та часть пара, которая все-таки просочится через нее в слой утеплителя, должна беспрепятственно выйти из него через паропроницаемую мембрану и, будучи подхваченной потоками воздуха, уйти в атмосферу.

Чем внешне отличается гидроизоляция от пароизоляции? Ответить на этот вопрос можно, проанализировав структуру обоих материалов.

Структура пароизоляционных пленок

Пароизоляция отличается от гидроизоляции главным образом тем, что обе ее стороны полностью водонепроницаемы. Пароизоляция не должна пропускать ни пар, ни воду как наружу (в дом), так и внутрь утеплителя. К дешевому варианту такой пленки можно отнести обычный полиэтилен.

Однако применять его в роли пароизоляции кровельного «пирога» не рекомендуется ввиду того, что под кровлей, особенно летом, пленка будет сильно греться, что приведет к ее вытягиванию и, возможно, к повреждению.

А поскольку кроем крышу не на один год, то оптимально использовать пленку из нескольких слоев с полимерным армирующим каркасом, который препятствует вытягиванию пленки.

Монтаж пароизоляции выполняется с внутренней стороны сровли

Обшивка внутренней поверхности мансардной кровли пленкой, покрытой фольгой с одной из сторон, обойдется в несколько дороже использования разного рода пароизоляционных материалов, однако, помимо создания надежного паронепроницаемого барьера, удастся еще и задержать в доме тепло.

Монтаж данной пленки выполняется  фольгированной поверхностью внутрь помещения, что способствует отражению от нее инфракрасного излучения, с которым и улетучивается основная доля тепла из жилища.

Перед покупкой любой пленки обязательно убедитесь, что она именно пароизоляционная, о чем должна свидетельствовать надпись на упаковке.

Структура и виды пленок гидроизоляции

Дилетанту вполне может показаться, что, если пароизоляция обладает полной водонепроницаемостью, то она вполне может послужить заменой слою гидроизоляции. Можно предположить даже по незнанию, что пароизоляция лучше гидроизоляции, что в корне не правильно.

Как пароизоляционные, так и гидроизоляционные пленочные материалы, служат строго для достижения определенной цели, и, если вы замените одно другим, это может привести к непредсказуемым последствиям и дополнительным денежным затратам.

Основные функции гидроизоляции состоят в следующем:

  • защита от попадания внешней влаги в слой утеплителя;
  • выведение случайно попавших паров воды из утеплителя.

Но как в утеплителе может вдруг оказаться пар? Все дело в том, что ни одна в мире пленка, казалось бы, герметично закрывающая утеплитель с обеих сторон, не обладает абсолютной паронепроницаемостью.

Доля водяного пара, пусть и незначительная, так или иначе проникает через пленочную изоляцию из вентиляционного зазора и изнутри помещения в утеплитель, а значит необходимо обеспечить возможность выхода этой влаги наружу.

Этой цели и служат пленки гидроизоляции, иначе именуемые мембранами.

Гидроизоляционные полимерные пленки обладают рядом полезных свойств:

  • устойчивостью к ультрафиолетовому излучению;
  • стойкостью к скачкам температур;
  • высокими прочностными характеристиками.

Источник: https://betonzavod-info.com/propuskaet-li-paroizolyatsiya-vodu/

«Мифы» про пароизоляцию

Пароизоляция пропускает воду или нет?

Пароизоляция играет важную роль в защите ограждающих конструкций дома, предотвращая проникновение в них водяного пара, тем самым позволяя сохранить теплоизолирующие свойства утеплителя и продлить срок службы всей конструкции.

К сожалению, потребители часто наделяют пароизоляцию «чудодейственными» свойствами, которыми она не обладает. Давайте разрушим эти мифы…

Миф №1: «Нахлёсты и примыкания пароизоляции проклеивать необязательно»

Для надёжной защиты утеплителя и элементов конструкций от водяного пара и конденсата необходимо формировать пароизоляционный слой, который должен быть сплошным, непрерывным и герметичным, потому что только при таких условиях он будет эффективно выполнять свои функции.

Основным, но не единственным, элементом пароизоляционного слоя является пароизоляция – материал с высокой способностью сопротивляться проникновению пара.

Другим не менее важным элементом являются соединительные ленты. Именно они обеспечивают герметичность нахлёстов и примыканий, помогая сделать пароизоляционный слой сплошным и непрерывным.

Если при монтаже пароизоляции не проклеить нахлёсты и/или примыкания, то через них влажный воздух сможет свободно проникать в ограждающие конструкции, что сведёт к минимуму эффективность мер по защите этих конструкций от водяного пара и конденсата.

Миф №2: «Для проклеивания нахлёстов и примыканий пароизоляции подойдет любой скотч»

Если для герметизации нахлёстов и примыканий пароизоляции были выбраны неподходящие для этого соединительные ленты, то через некоторое время пароизоляционный слой может выглядеть так…

Поэтому важно, чтобы соединительные ленты применялись в соответствии с их назначением. Например, некоторые из них предназначены только для герметизации нахлёстов пароизоляции, другие для герметизации нахлёстов и выполнения примыканий к гладким поверхностям, а для осуществления герметичного соединения пароизоляции с шероховатыми или пористыми поверхностями требуется третий тип лент и т.д.

Желательно использовать соединительные ленты той же марки, что и сама пароизоляция. Это связано с тем, что при создании таких лент, производитель учитывает особенности скрепляемых материалов для обеспечения не только герметичности данного соединения, но и максимального срока его службы.

Для получения действительно качественного и надёжного соединения, кроме всего вышеперечисленного, следует также соблюдать основные требования к монтажу соединительных лент:

  • Cклеиваемые поверхности должны быть сухими и чистыми;
  • Не производить монтаж лент при температуре ниже рекомендуемой.

Существует несколько мифов о пароизоляции и конденсате, которые звучат так…

Миф №5: «Любую проблему с образованием конденсата можно решить с помощью пароизоляции»

Все три мифа подразумевают, что пароизоляция каким-то образом может повлиять на процесс образования конденсата: предотвратить его, остановить или повернуть вспять (заставить испариться). Чтобы разобраться так ли это, необходимо понимать, откуда и при каких условиях образуется конденсат.

Конденсат образуется из влаги, находящейся в воздухе в парообразном состоянии, при определенных условиях (температуре и влажности). Температура, при которой происходит конденсация влаги из воздуха, называют «температурой точки росы».

При температуре +22°С и влажности воздуха 65%, температура точки росы +15,1°С. Это означает, что конденсат будет образовываться на поверхностях, температура которых +15,1°С и ниже.

Если при той же температуре (+22°С) влажность воздуха возрастёт до 80%, то конденсат будет образовываться на поверхностях, температура которых +18,4°С и ниже. Т.е.

чем выше влажность воздуха, тем при меньшей разнице температур будет образовываться конденсат.

Теперь, рассмотрим этот процесс на конкретном примере.

Представьте, что вы являетесь счастливым обладателем каркасного дачного домика, в котором в качестве теплоизоляции применён минераловатный утеплитель и устроен герметичный пароизоляционный слой.

В домике вы живете только в летний период, но в один прекрасный зимний день решаете провести в нём все новогодние праздники.

Вы приезжаете на дачу и начинаете прогревать дом, а чтобы это быстрее произошло, включаете обогревательные приборы на максимум и через какое-то время начинаете замечать мокрые пятна на стенах и потолке… Это и есть конденсат. Так почему же он образовался?

Воздух в доме нагрелся, и появилась разница парциального давления, под действием которой водяные пары, содержащиеся в воздухе, устремились выйти наружу через ограждающие конструкции, но встретили на своем пути барьер – пароизоляцию.

А так как воздух в доме прогрелся быстрее, чем поверхность пароизоляции, то, этой разницы температур оказалось достаточно, чтобы влага, содержащаяся в воздухе выпала на поверхности пароизоляции в виде конденсата. Например, если воздух в доме нагрелся до +25 град.

и его влажность составляет 60%, то до тех пор, пока температура поверхности пароизоляции не станет выше +16,7 град., на ней будет образовываться конденсат (см. таблицу).

В случае отсутствия пароизоляционного слоя или его негерметичности водяные пары смогут проникнуть внутрь ограждающих конструкций, где, встретив на своем пути фронт холода, выпадут в виде конденсата, а тот в свою очередь перейдет в твердое состояние – лёд. Т.е.

процесс образования конденсата будет проходить точно так же, но уже в толще конструкций. Наблюдать этот процесс вы не сможете, но его последствия проявятся во время ближайшей оттепели, когда уличный воздух прогреется, а вместе с ним и ограждающие конструкции.

Замерзший конденсат растает и потечёт внутрь дома, что будет особенно заметно в скатной кровле.

Возвращаясь к нашим мифам и подводя итог всему вышесказанному, можно сделать вывод, что пароизоляция не сможет предотвратить или остановить процесс образования конденсата и не заставит его испариться, НО устройство герметичного пароизоляционного слоя, препятствующего проникновению водяных паров в толщу ограждающих конструкций и снижающего таким образом риск образования в них конденсата, позволяет защитить утеплитель и внутренние элементы конструкций от последствий его негативного влияния.

Для снижения вероятности образования конденсата в ограждающих конструкциях должен быть предусмотрен комплекс мер и устройство герметичного пароизоляционного слоя – неотъемлемая и важная часть этого комплекса:

  1. Ограждающие конструкции должны быть спроектированы и выполнены в соответствии с требованиями СП 50.13330.2012 «Тепловая защита зданий» и других действующих Строительных норм и правил;
  2. Необходимо поддерживать температурно-влажностный режим жилых помещений согласно ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещении»,  холодного чердака согласно «Правилам и нормам технической эксплуатации жилищного фонда. МДК 2-03.2003»;
  3. Необходимо устраивать сплошной, непрерывный и герметичный пароизоляционный слой.

Миф №6: «Антиконденсатная поверхность пароизоляции отводит влагу из конструкции – уничтожает конденсат»

Чтобы разрушить этот миф необходимо разобраться, что представляет собой антиконденсатная поверхность и для чего она предназначена на самом деле.

Как мы уже говорили, из-за разницы парциального давления водяные пары из помещения стремятся выйти наружу через ограждающие конструкции, но встречают на своем пути барьер – пароизоляцию.

При определенных условиях (температуре и влажности) пар конденсируется на поверхности пароизоляции и если эта поверхность гладкая, то капли конденсата могут стекать по ней и попадать на внутреннюю отделку, приводя к её намоканию.

Антиконденсатная поверхность пароизоляции представляет собой ворсистый слой, который способен впитывать некоторое количество конденсата и удерживать его, до тех пор, пока не сложатся благоприятные условия для испарения. 

Эта способность, а также монтаж пароизоляции ворсистым слоем в сторону помещения и с зазором к внутренней отделке, способствует снижению риска намокания этой отделки.

Т.е. антиконденсатная поверхность пароизоляции не выводит влагу из конструкции и не уничтожает конденсат, а также не обладает свойствами, которые могли бы обеспечить такой эффект. НО, засчёт способности удерживать конденсат, она позволяет продлить срок службы внутренней отделки, снижая риск её намокания. 

Миф №7 «Конденсат в ограждающей конструкции образовывается из-за того, что пароизоляция уложена «неправильной» стороной к утеплителю»

То, какой стороной (шероховатой или гладкой) к утеплителю уложена пароизоляция может оказать влияние только на срок службы внутренней отделки, т.к. шероховатая сторона обладает той же способностью, что и антиконденсатная поверхность, но в меньшей степени (см. Миф №6).

Сторона укладки пароизоляции никаким образом НЕ влияет на:

  • Её сопротивление паропроницанию.
    Если пароизоляционный слой герметичный, то он будет выполнять свои функции – предотвращать проникновение водяного пара и конденсата в утеплитель и элементы ограждающих конструкций, независимо от того какой стороной уложена пароизоляция.
  • Условия образования конденсата.

Итак, теперь вы знаете, что:

  1. Нахлёсты и примыкания пароизоляции обязательно нужно проклеивать подходящими для этого соединительными лентами.
  2. Пароизоляция не сможет предотвратить или остановить процесс образования конденсата и не заставит конденсат испариться, НО устройство герметичного пароизоляционного слоя, препятствующего проникновению водяных паров в толщу ограждающих конструкций и снижающего таким образом риск образования в них конденсата, позволяет защитить утеплитель и внутренние элементы конструкций от последствий его негативного влияния.
  3. Антиконденсатная поверхность пароизоляции не выводит влагу из конструкции и не уничтожает конденсат, но при монтаже пароизоляции ворсистым слоем в сторону помещения и с зазором к внутренней отделке, способствует снижению риска намокания этой отделки, тем самым продлевая срок её службы.
  4. Сопротивление паропроницанию пароизоляции не зависит от стороны её укладки. Если пароизоляционный слой герметичный, то он будет выполнять свои функции – предотвращать проникновение водяного пара и конденсата в утеплитель и элементы конструкций, независимо от того какой стороной (шероховатой или гладкой) внутрь обращена пароизоляция.

Оставить отзыв

Источник: http://isospan.gexa.ru/stati/mify-pro-paroizolyatsiyu

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.